Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 35(47): 15666-81, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609159

RESUMO

Here, we have asked about post-transcriptional mechanisms regulating murine developmental neurogenesis, focusing upon the RNA-binding proteins Smaug2 and Nanos1. We identify, in embryonic neural precursors of the murine cortex, a Smaug2 protein/nanos1 mRNA complex that is present in cytoplasmic granules with the translational repression proteins Dcp1 and 4E-T. We show that Smaug2 inhibits and Nanos1 promotes neurogenesis, with Smaug2 knockdown enhancing neurogenesis and depleting precursors, and Nanos1 knockdown inhibiting neurogenesis and maintaining precursors. Moreover, we show that Smaug2 likely regulates neurogenesis by silencing nanos1 mRNA. Specifically, Smaug2 knockdown inappropriately increases Nanos1 protein, and the Smaug2 knockdown-mediated neurogenesis is rescued by preventing this increase. Thus, Smaug2 and Nanos1 function as a bimodal translational repression switch to control neurogenesis, with Smaug2 acting in transcriptionally primed precursors to silence mRNAs important for neurogenesis, including nanos1 mRNA, and Nanos1 acting during the transition to neurons to repress the precursor state. SIGNIFICANCE STATEMENT: The mechanisms instructing neural stem cells to generate the appropriate progeny are still poorly understood. Here, we show that the RNA-binding proteins Smaug2 and Nanos1 are critical regulators of this balance and provide evidence supporting the idea that neural precursors are transcriptionally primed to generate neurons but translational regulation maintains these precursors in a stem cell state until the appropriate developmental time.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas Repressoras/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Feminino , Masculino , Mamíferos , Camundongos , Biossíntese de Proteínas/fisiologia
2.
Development ; 142(16): 2781-91, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26209645

RESUMO

Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction.


Assuntos
Encéfalo/embriologia , Caderinas/metabolismo , Proliferação de Células/fisiologia , Células-Tronco Neurais/fisiologia , Tubo Neural/embriologia , Animais , Western Blotting , Caderinas/genética , Técnicas de Silenciamento de Genes , Camundongos , Microscopia de Fluorescência , Tubo Neural/metabolismo , beta-Galactosidase
3.
Dev Cell ; 32(1): 31-42, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25556659

RESUMO

Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, and aberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation in the Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD.


Assuntos
Transtorno Autístico/patologia , Proliferação de Células , Cromatina/genética , Proteínas de Ligação a DNA/fisiologia , Histona Desacetilases/metabolismo , Neurogênese/genética , Acetilação , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Comportamento Animal , Biomarcadores/metabolismo , Western Blotting , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Feminino , Perfilação da Expressão Gênica , Histona Desacetilases/química , Histona Desacetilases/genética , Histonas/metabolismo , Imunoprecipitação , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
PLoS One ; 9(8): e104767, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136812

RESUMO

The Snail transcription factor regulates diverse aspects of stem cell biology in organisms ranging from Drosophila to mammals. Here we have asked whether it regulates the biology of neural precursor cells (NPCs) in the forebrain of postnatal and adult mice, taking advantage of a mouse containing a floxed Snail allele (Snailfl/fl mice). We show that when Snail is inducibly ablated in the embryonic cortex, this has long-term consequences for cortical organization. In particular, when Snailfl/fl mice are crossed to Nestin-cre mice that express Cre recombinase in embryonic neural precursors, this causes inducible ablation of Snail expression throughout the postnatal cortex. This loss of Snail causes a decrease in proliferation of neonatal cortical neural precursors and mislocalization and misspecification of cortical neurons. Moreover, these precursor phenotypes persist into adulthood. Adult neural precursor cell proliferation is decreased in the forebrain subventricular zone and in the hippocampal dentate gyrus, and this is coincident with a decrease in the number of adult-born olfactory and hippocampal neurons. Thus, Snail is a key regulator of the numbers of neural precursors and newborn neurons throughout life.


Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Cruzamentos Genéticos , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Feminino , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/citologia , Prosencéfalo/citologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Células Receptoras Sensoriais/citologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo
5.
J Neurosci ; 34(15): 5164-75, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719096

RESUMO

The Snail transcription factor plays a key role in regulating diverse developmental processes but is not thought to play a role in mammalian neural precursors. Here, we have examined radial glial precursor cells of the embryonic murine cortex and demonstrate that Snail regulates their survival, self-renewal, and differentiation into intermediate progenitors and neurons via two distinct and separable target pathways. First, Snail promotes cell survival by antagonizing a p53-dependent death pathway because coincident p53 knockdown rescues survival deficits caused by Snail knockdown. Second, we show that the cell cycle phosphatase Cdc25b is regulated by Snail in radial precursors and that Cdc25b coexpression is sufficient to rescue the decreased radial precursor proliferation and differentiation observed upon Snail knockdown. Thus, Snail acts via p53 and Cdc25b to coordinately regulate multiple aspects of mammalian embryonic neural precursor biology.


Assuntos
Córtex Cerebral/embriologia , Células-Tronco Neurais/metabolismo , Neurogênese , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...